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Abstract— Deep neural networks (DNNs) have been showed to
be highly vulnerable to imperceptible adversarial perturbations.
As a complementary type of adversary, patch attacks that
introduce perceptible perturbations to the images have attracted
the interest of researchers. Existing patch attacks rely on the
architecture of the model or the probabilities of predictions and
perform poorly in the decision-based setting, which can still
construct a perturbation with the minimal information exposed
– the top-1 predicted label. In this work, we first explore the
decision-based patch attack. To enhance the attack efficiency,
we model the patches using paired key-points and use targeted
images as the initialization of patches, and parameter optimiza-
tions are all performed on the integer domain. Then, we propose a
differential evolutionary algorithm named DevoPatch for query-
efficient decision-based patch attacks. Experiments demonstrate
that DevoPatch outperforms the state-of-the-art black-box patch
attacks in terms of patch area and attack success rate within a
given query budget on image classification and face verification.
Additionally, we conduct the vulnerability evaluation of ViT and
MLP on image classification in the decision-based patch attack
setting for the first time. Using DevoPatch, we can evaluate the
robustness of models to black-box patch attacks. We believe this
method could inspire the design and deployment of robust vision
models based on various DNN architectures in the future.

Index Terms— Adversarial example, patch attack, black-box
attack, differential evolutionary algorithm.

I. INTRODUCTION

NOWADAYS, deep neural networks (DNNs) have been
employed as the fundamental techniques in the advance-

ment of artificial intelligence in computer vision. Despite the
success of DNNs, recent studies have identified that DNNs
are vulnerable to adversarial examples [1]. By introducing
maliciously crafted perturbations to the input images, these
adversarial examples are able to evade and mislead DNNs.
Consequently, studying the adversarial vulnerability of DNNs
has emerged as an important research area, providing the
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opportunity to better understand and improve computer vision
models.

Classical works [1], [2], [3], [4], [5], [6], [7] focus on
studying the adversarial vulnerability of DNNs against vir-
tually imperceptible perturbations that are constrained to have
a small norm but are typically applied to the whole input
image. Recently, as a complementary type of adversary, patch
attacks that introduce perceptible (large norm) but localized
perturbations to the images have attracted the interest of
researchers. Pioneering works [8], [9], [10], [11], [12] perform
patch attacks in the white-box setting: with full access to
the model’s parameters and architectures, they can directly
use gradient-based optimization to find successful adversarial
examples. Due to the fact that most real-world applications
do not publicly release the actual models they use, this
attack scenario usually is less practical in real-world systems,
e.g., attacking image analysis APIs [13] like Google Cloud
Vision or self-driving cars [14], [15], [16].

As a more practical scenario in real-world systems, black-
box patch attacks have attracted a lot of attention in recent
years. There are transfer-based attacks [17] and query-based
attacks [18], [19], [20], [21] for black-box patch attacks,
depending on whether the attacker needs to query the victim’s
machine learning model. Despite the fact that transfer-based
attacks do not require query access to the model, it assumes
the attacker has access to a large training set to create a
carefully-designed substitute model [22], [23], [24], and there
is no guarantee of success [25]. Query-based attacks assume
that attackers can only query the target network and obtain
its outputs (score or label) for a given input. According to
the output information of the queried models, query-based
attacks can be classified into two sub-categories: score-based
setting which has access to the class probabilities of the model,
and decision-based setting which solely relies on the top-1
predicted label. Significantly, decision-based settings present
more practical threats to deployed systems and applications
because an adversary is still capable of exploiting the very
minimal information exposed – the top-1 predicted label –
for constructing an adversarial perturbation. Recently, some
score-based patch attacks [18], [19], [20], [21] have been
proposed. However, when these methods are applied to the
decision-based setting, they hardly achieve high attack success
rate and query efficiency because the information provided by
labels is limited.

In this paper, we first explore the decision-based patch
attack to better measure the practical threat of patch
attacks. To successfully conduct decision-based black-box
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patch attacks, there are still non-negligible challenges to
overcome:

A. Complex Solution Space

Performing patch attacks is extremely challenging since it
involves searching for all possible positions, shapes, and per-
turbations of adversarial patches, which implies an enormous
solution space. Moreover, unlike white-box scenarios or the
score-based black-box setting, in the decision-based black-box
setting, there is almost no valid information to guide the search
direction.

B. Query Efficiency

In the query-based setting, achieving high query efficiency
with a high attack success rate is integral to adversarial
objectives. Because: i) adversaries are able to carry out attacks
at scale; ii) the cost of mounting the attack is reduced, and
iii) adversaries are capable of bypassing defense systems that
can recognize malicious activities as a fraud based on a prag-
matically large number of successive queries with analogous
inputs. Last but not least, the advantage of a smaller query
budget is that it correlates to a lower cost of evaluation and
research, which is useful for determining the robustness of the
model to adversarial attacks.

To address the aforementioned issues, we propose a
differential evolutionary algorithm named DevoPatch for
query-efficient adversarial patch attacks in the decision-based
black-box setting. Differential evolutionary algorithm is a
black-box optimization algorithm that does not need to know
the details of the model and is suitable for parameter search
when information is limited. Given the attack objective
function, DevoPatch is able to optimize it in a black-box
manner through queries only. To simplify the solution space,
we restrict parameter optimization to the integer domain and
carefully design a differential evolution algorithm based on the
integer domain. Further, we model the patches using paired
key-points and use targeted images as the initialization of
patches. Consequently, the query efficiency of DevoPatch is
significantly improved. In addition, it is worth noting that some
novel DNN architectures have recently emerged including the
Vision Transformer (ViT) model [26] and Multi-layer Percep-
tron (MLP) based model [27]. They demonstrate compelling
performance, sometimes even outperforming classical convo-
lutional architectures. Although a few studies have explored
the vulnerability of ViT against imperceptible adversarial
perturbations [28], [29], the adversarial robustness of ViT
and MLP under patch attacks has not been considered. This
raises a critical security concern for the reliable deployment
of real-world applications based on ViT and MLP models.
Therefore, we extend our study scope and apply DevoPatch to
ViT and MLP to better understand the vulnerability of a wide
variety of DNNs under adversarial patch attacks. We illustrate
an example patch attack with DevoPatch against ILSVRC2012
in Fig. 1 on image classification. Extensive experiments on
image classification and face verification demonstrate that
DevoPatch is a query-efficient decision-based black-box patch
attack.

Fig. 1. Introduction of DevoPatch. With regard to limited query budgets,
we generate adversarial examples of patch attacks using DevoPatch applied to
black-box models on image classification. As the number of queries increases,
DevoPatch efficiently optimizes the quality of adversarial patches and achieves
query-efficient decision-based patch attacks under a few query budgets.

We summarize our contributions and results below:
• We first explore the decision-based patch attack, which

can still construct a perturbation with the minimal infor-
mation exposed – the top-1 predicted label.

• To simplify the solution space, we model the patches
using paired key-points and use targeted images as the
initialization of patches, and parameter optimizations are
all performed on the integer domain.

• We propose a novel patch attack – DevoPatch – an
evolutionary algorithm capable of exploiting access to
solely the top-1 predicted label from a model to search
for an adversarial example, whilst minimizing the image
area that needs to be corrupted for a successful attack.

• Comprehensive experiments on image classification and
face verification show that DevoPatch achieves consider-
ably higher success rates compared to related work, while
being more efficient in terms of the number of queries.

• We conduct the vulnerability evaluation of ViT and MLP
on image classification in the decision-based black-box
patch attack setting for the first time. We compare results
with ResNet to assess the relative robustness of the ViT
and MLP models.

The remainder of the paper is organized as follows.
Section II briefly reviews the literature related to adversarial
examples and adversarial patches, white-box patch attacks,
black-box patch attacks, and adversarial attacks with evolu-
tionary algorithms. Section III first introduces the definition
of decision-based black-box patch attacks and then details
the proposed differential evolutionary patch attack. Section IV
shows the experimental results to demonstrate the effective-
ness of the proposed differential evolutionary patch attack.
Firstly, we choose appropriate hyperparameters for DevoPatch.
Afterward, we evaluate the adversarial robustness of several
image classification and face recognition models. In Section V,
we further analyze the effects of adversarial patches on differ-
ent DNN architectures. We summarize the paper in Section VI.
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II. RELATED WORK

In this section, we briefly review the literature related to
adversarial examples and adversarial patches, white-box patch
attacks, and black-box patch attacks. In the end, we also
discuss adversarial attacks based on evolutionary algorithms.

A. Adversarial Example and Adversarial Patch

The seminal works of Szegedy et al. [1] inspire an interest
in studying adversarial vulnerability against imperceptible
perturbations as a mean of understanding and improving deep
neural networks. Since then, a majority of prior works [2],
[3], [4], [5], [6], [7] have focused on attacking with small
and imperceptible perturbations to the input, which can be
regarded as the imperceptible adversarial attack. Commonly
these imperceptible perturbations are applied to the whole
input image and are constrained by p-distances (p ∈ {0, 2,∞})
similarity measurement. Recently, as a complementary type of
adversary, patch attacks that introduce perceptible (large norm)
but localized perturbations to the images have emerged and
attracted the interest of researchers. Patch attacks (or adver-
sarial patches) can be regarded as the perceptible adversarial
attack. The main aim of patch attacks is to minimize the
perturbation within a continuous image region that needs to be
corrupted to mislead a target machine learning model. Only
a handful of works have investigated patch attacks and these
works can be broadly categorized based on various degrees
of adversarial access to a model. In this paper, we focus on
black-box patch attacks because they are more practical and
more threatening.

B. White-Box Patch Attack

In the white-box setting, an adversary has full knowledge
and access to the model, including gradients and parameters.
GAP [8] first creates universal, robust, targeted adversarial
image patches in the real world and causes a classifier to output
any target class in the white-box setting. Then LaVAN [9]
concentrates on investigating the blind spots of state-of-the-art
image classifiers in the digital domain, which crafts adversarial
patches using an optimization-based approach with a modified
loss function. Then [10] and [11] introduce position search to
improve the attack performance of adversarial patches. Due to
the enormous solution space and the trade-off between com-
putational cost and attack performance, adversarial patches are
usually created with a fixed shape or location even under
the white-box setting. Since then, adversarial patches have
been used to attack self-driving cars [14], [15], [16], object
detection [30], [31], [32] and face cognition [33], [34], [35].
However, white-box patch attacks are less practical, since most
real-world applications do not release their models and cannot
directly solve adversarial patches via gradients. In this paper,
we focus on black-box patch attacks because they are more
threatening to real-world systems.

C. Black-Box Patch Attack

Black-box patch attacks can be either transfer-based [17]
or query-based [18], [19], [20], [21], depending on whether

the attacker needs to query the victim’s machine learning
model. However, transfer-based attacks require access to large
amounts of training data and require careful construction of
surrogate models. It does not guarantee that the attack will
be successful. In contrast, query-based attacks only require
access to the output of the victimized model and have a higher
attack success rate as the number of queries increases, which
is more practical and more threatening. In the query-based
attack, an adversary can access all or only one predicted
score (score-based settings) or call out just the predicted
labels (decision-based settings) for a given input. We need
a query-efficient algorithm that helps reduce the cost of
evaluating the robustness of DNNs since the attacker has to
pay for each query.

Query-based patch attacks are first introduced in Hastings
Patch Attack (HPA) [18]. They do not optimize the pattern
of the patches and instead use the monochrome patches. The
position and shape of the rectangular patches are randomly
searched using Metropolis-Hastings sampling. To improve
the query efficiency of HPA, [19] first uses reinforcement
learning to search the position and size of monochrome
rectangular patches, called Monochrome Patch Attack (MPA).
But monochrome patches usually lead to a very low attack
success rate, especially for the targeted attack. They then
use ImageNet training data to build a class-specific texture
dictionary via style transfer [36] to craft targeted patch attacks,
termed Texture-based Patch Attack (TPA). However, in practi-
cal scenarios, it is impossible to obtain the whole training set
data of the target black-box models. Adv-watermark (AdvW)
[20] utilizes the basin hopping evolution algorithm to find
a suitable position and transparency for the watermark to
implement the patch attack. Patch-Rs [21] proposes a random
search framework and then designs an initialization scheme
and a sampling distribution specific for adversarial patches.
This outperforms previous works in both query efficiency and
attack success rates. Unfortunately, all of the aforementioned
works are only designed for the score-based black-box setting.
They perform poorly on the more challenging and restrictive
decision-based attack (Experiment IV-C). Further, decision-
based settings present more practical threats to deployed
systems. To the best of our knowledge, we make the first
investigation of the robustness of DNNs against patch attacks
using a decision-based black-box setting.

D. Adversarial Attacks With Evolutionary Algorithms

Notably, there are some related works [37], [38], [39] which
also leverage evolutionary algorithms to perform impercepti-
ble attacks. These methods are all under the framework of
evolutionary algorithms, with operations such as crossover
and mutation. However, these methods cannot achieve query-
efficient decision-based patch attacks due to the limitations
of the modeling of adversarial examples. One-pixel attack
[37] generates one-pixel adversarial perturbations based on
differential evolution. It is not effective when the number of
perturbations is large because the number of queries to the
model grows rapidly with respect to the number of perturbed
pixels in patches. Evo-Attack [38] utilizes the covariance
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matrix adaptation evolution strategy to search the impercep-
tible perturbations but it cannot search for the location and
shape of patches. SparseEvo [39] models sparse perturbations
as binary codes and solves them using genetic algorithms.
However, this binary representation cannot define contiguous
regions, thus making it impossible to model patches and per-
form patch attacks. Our DevoPatch is based on the differential
evolution algorithm, carefully designed in the integer domain
to achieve query-efficient decision-based patch attacks. Con-
sequently, we first construct a dimensionality-reduced solution
space in which possible solutions (individuals of a population)
are paired key-points in the integer domain. This is quite
different from most current evolutionary attack methods.

III. METHODOLOGY

In this section, we first introduce the definition of decision-
based black-box patch attacks and then detail the proposed
differential evolutionary patch attack.

A. Problem Definition

Patch attacks are one of the most threatening types of
adversarial examples that an adversary can arbitrarily modify
the pixels of a continuous region, and the patch of this region
leads machine learning models to make incorrect predictions.
Here, we first give the formulation of patch attack on image
classification. Face verification can be viewed as a binary clas-
sification task, similar to image classification. For an classifier
f : x → y, we are given a source image x ∈ RC×H×W

and its corresponding ground truth label y from the label set
Y = {1, 2, . . . , K } where K denotes the number of classes.
C , W , and H denote the number of channels, height, and
width of an image, respectively. In the setting of patch attacks,
the adversarial patch is composed of adversarial perturbations
δ ∈ RC×H×W and location masks M ∈ {0, 1}H×W . Given a
source image x, we formulate the adversarial example x̃ as
the combination of a source image x, an adversarial patch δ

and a location mask M :

x̃ = (I − M)⊙ x + M ⊙ δ, (1)

where ⊙ represents the element-wise Hadmard product and I
represents all-one matrices with the same dimension as M .

In the decision-based black-box setting, our access is limited
to its output label. For the targeted attack, the adversary
perturbs the source image x so that the obtained adversarial
example x̃ ∈ RC×H×W is misclassified as the desired class
label ỹ ∈ Y. We refer to the desired class ỹ of the input x
as the target class and its ground-truth class y as the source
class. For the untargeted attack, the adversary perturbs the
source image x to lead the output label of the classifier to any
class label except the ground truth label y, i.e. ỹ ∈ Y where
ỹ ̸= y. In general, the patch attack (including targeted and
untargeted settings) to find the best adversarial example x∗

can be expressed as a constrained optimization problem:

x∗
= arg min

M,δ
||x − x̃||0 s.t. f (x∗) = ỹ, (2)

where || · ||0 denotes the number of perturbed pixels. For
the patch not to be perceived, Eq. 2 aims to determine the

perturbation and position with the constraint of a few perturbed
pixels, which leads to a complex solution space and hampers
the search. In addition, given the constraint and the fact that f
is not differentiable in the decision-based setting, the solution
to the optimization problem is not trivial.

B. Simplification on Solution Space

The enormous solution space on patch attacks is caused
by all possible positions, shapes, and perturbations of the
patch. A naive parametric search method can be directly used
to solve this problem. Specifically, the parameter set V is
defined as a series of candidate solutions v, represented by
the coordinates and RGB values of each pixel. However, this
naive application results in very inefficient queries [37]. Fur-
thermore, in the decision-based black-box setting, there is little
effective information to guide the search direction, thus further
reducing the query efficiency. To improve the query efficiency
of decision-based attacks, we need to reduce the complexity of
the solution space. Although in the decision-based setting, the
black-box model can hardly provide effective information so
the only information we can fully utilize is the target class ỹ of
the targeted attack. To facilitate a parametric search method,
instead of searching for parameters defining RGB values of
each perturbed pixel, we consider that the perturbation δ can
be replaced by a targeted image xt . Targeted images are only
required to be classified as target class by the black-box model
and do not need to be i.i.d. with the training set (analyzed in
Section IV-G.2). Simultaneously, it is redundant to represent
a patch with a coordinate set of perturbed pixels. For a patch,
we only need to know a pair of points to formulate the location
mask M of the patch. Therefore, we vectorize each candidate
solution in the parameter set V as a 4-dimensional vector
v = {(i1, j1), (i2, j2)} (i1 < i2, j1 < j2) where i ∈ N and
j ∈ N denotes the coordinate of the paired key-points. Here,
we employ a simple mapping function T (·) to re-formulate
the location mask M = T (v) and the adversarial example x̃:

T (v) =

{
1, if 0 ≤ i1 < i2 < H, 0 ≤ j1 < j2 < W,

0, otherwise,
(3)

x̃ = (I − M)⊙ x + M ⊙ xt . (4)

In general, we transform the original complex solution
space into a coordinate programming problem for paired
key-points on the integer domain. Interestingly, this strategy
of simplification has been found to be extremely effective in
a decision-based patch attack. Next, we need to design how
to select and update suitable candidate solutions.

C. Differential Evolutionary Patch Attack

In this section, we propose the DevoPatch, an efficient para-
metric search method based on the differential evolutionary
algorithm that seeks a solution by iteratively improving upon
potential solutions in search of a desirable one. In differential
evolution, the population is the candidate solution and the
population set is the parameter set. We carefully design
the differential evolution algorithm on the integer domain,
including population initialization, mutation, and crossover.
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Fig. 2. The pipeline of DevoPatch. The Population Initialization stage creates the initialized populations. During the differential evolution, by a combination
of mutation, crossover, fitness calculation, and population selection, the population can improve over time to produce a satisfactory adversarial example.

Therefore, DevoPatch improves the differential evolution by
simplifying solution spaces to the integer domain and the
population can improve over time to produce a satisfactory
result. Moreover, our search method employs the differen-
tial evolutionary algorithm without requiring any background
knowledge of the target model, such as its architecture or
parameters, to construct the fitness function. DevoPatch can be
used to analyze and solve the non-trivial optimization problem
in Eq. 2 in a black-box setting and can provide a possible
remedy for complex solution space. The pipeline of DevoPatch
is shown in Fig. 2

First, we give the definition of fitness calculation. Fitness
is used to evaluate the quality of candidate solutions, mainly
used in population initialization and population selection.
In general, fitness function g(·) should reflect optimization
objectives. In the score-based setting, since logits can be
obtained, cross-entropy loss or margin loss [5] can be used
to measure the quality of candidate solutions. In the decision-
based setting, since only the predicted labels can be obtained,
it is difficult for us to use the change of loss to measure
the quality of new candidate solutions. The loss only changes
when the predicted label changes, which causes many potential
candidates to be discarded. Therefore, a fitness function is
required to approximate the calculation of the loss function
in the decision-based setting. Since our populations describe
a paired key-point of the patch and the method uses targeted
images as initialization, we consider an adversarial example
with a smaller patch area would have better quality. Therefore,
we formulate our fitness function as:

g(x̃) =

{
||x − x̃||0, if f (x̃) = ỹ
∞, otherwise.

(5)

Although the fitness function is l0 norm, other distance metrics
are also feasible (further analyze in Section IV-B.5).

Then, we initialize a population set of p various candidate
solutions named initialized population v0. In the population
initialization, it is trivial to apply targeted images directly as

initialization. The diversity among populations is conducive to
improving query efficiency, so we introduce an initialization
rate µ to control the diversity of population initialization.
Specifically, we first calculate height margin 1h = ⌊H ·µ⌋ and
width margin 1w = ⌊W ·µ⌋ (1h ∈ N, 1w ∈ N) as candidate
domains. Then, every candidate solution is generated by only
a randomly sample in the following condition:

i1 ∈ [0, 1h), i2 ∈ [H −1h, H),

j1 ∈ [0, 1w), j2 ∈ [W −1w, W ]. (6)

Finally, if the fitness score of the initialized population v0 is
not ∞ by using Eq. 5, the initialized population v0 will be
successfully added to the population set V . Fitness scores are
saved in a fitness score vector G for each candidate solution.
The population initialization is detailed in Algorithm 1.

Mutation is an important step in generating superior off-
spring (new candidate populations). Although the initialized
population in the population initialization stage has a certain
diversity, the overall difference is not significant, which will
cause the next generation to be very similar and reduce
query efficiency. In order to ensure the diversity of off-
spring, we introduce mutation rate γ to generate better
offspring. Compared with the traditional differential evolution-
ary algorithm [40], we need to ensure that the calculation is
closed and the solution set of offsprings is an integer domain,
so mutation rate γ must be an integer, i.e. γ = 1. Specifi-
cally, when DevoPatch converges, the coordinate difference in
candidate solutions is often only 1. If γ is a real number (i.e.
γ = 0.5), it may be 0 after rounding to coordinates, resulting
in no new offspring and reducing diversity. In practice, we first
select the best vkbest and two randomly selected candidate
solutions v j , vq . Then, vr is based on vkbest plus γ times
the difference between v j and vq . Formally, the mutation can
be formulated as:

vr
= vkbest + γ · (v j

− vq). (7)
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Algorithm 1 Population Initialization Algorithm
Input: source image x, ground-truth label y, targeted image
xt , target label ỹ, population size p, initialization rate µ and
model f
Output: V, G

1: V ← ∅, G ←∞
2: for i ← 1, 2, . . . , p do
3: c← 0
4: 1h ← ⌊H · µ⌋, 1w← ⌊W · µ⌋
5: while True do
6: Generate v0 with 1h, 1w using Eq. 6
7: Generate x̃ with v0, xt using Eq. 4
8: Calculate g(x∗) with f (x̃) using Eq. 5
9: if f (x̃) = ỹ and g(x∗) < Gi then

10: Gi ← g(x∗)

11: V ← V ∪ {v0
}

12: break
13: end if
14: if c > 10 then
15: 1h← 1, 1w← 1
16: end if
17: c← c + 1
18: end while
19: end for
20: return V, G

In order to increase the diversity of the generated population
vr , crossover is introduced. The diversity of a population
enables the exploration of the solution space for better indi-
viduals. Consequently, crossover operation is a crucial part
of our method for further promoting population diversity, and
every offspring after mutation can have the crossover. Unlike
the traditional differential evolution algorithm [40], because
the paired key-points of the modeling patches have an order
relationship, it is impossible to directly perform crossover
by element according to the probability. In practice, for any
element in a candidate solution vr after mutation, we randomly
add a noise κ = {−1, 0, 1}4 to it respectively, to help jump
out of the local optimal solution. Therefore, crossover can be
expressed as:

vm
= vr

+ {−1, 0, 1}4. (8)

The evolution algorithm assumes that superior individuals
are selected from a population and inferior individuals are
eliminated. According to this assumption, individuals with
better fitness scores are more likely to survive over time.
Specifically, if an offspring has a smaller fitness score, it will
also be better on Eq. 2 and be a better adversarial example.
Hence, if a new offspring has a smaller fitness score than the
worst offspring in the population, the worst offspring will be
discarded and the new offspring will be selected in its place.

Algorithm 2 summarizes the pipeline of DevoPatch. First,
we obtain the initial population set and fitness scores through
population initialization. Then, new offspring is generated by
mutation and crossover to enhance diversity during each query.
Next, the fitness score is calculated for the new population.
Finally, the new population will be selected and updated

Algorithm 2 DevoPatch
Input: source image x, ground-truth label y, targeted image
xt , target label ỹ, query budget N , population size p, initial-
ization rate µ, mutation rate γ , model f
Output: adversarial example x∗

1: V, G ← PopulationInitialization( f, x, y, xt , ỹ, µ, p)

2: kbest ← arg mink(G), kworst ← arg maxk(G)

3: for i ← 1, 2, . . . , N do
4: Random sample v j , vq from V \vkbest

5: Initial vr with v j , vq, vkbest using Eq. 7
6: Generate vm by random noises κ using Eq. 8
7: Generate x̃ with vm, xt using Eq. 4
8: Calculate g(x∗) with f (x̃) using Eq. 5
9: if g(x∗) < Gkworst then

10: vkworst ← vm

11: Gkworst ← g(x∗)

12: end if
13: kbest ← arg mink(G), kworst ← arg maxk(G)

14: end for
15: Generate x∗ with vkbest , xt using Eq. 4
16: return x∗

according to the fitness score. Note that each time a new
population is generated, we need perform boundary processing
on the new population to ensure that 0 ≤ i1 < i2 < H, 0 ≤
j1 < j2 < W .

IV. EXPERIMENTS

In this section, we show the experimental results to demon-
strate the effectiveness of the proposed differential evolution-
ary patch attack. First, we choose appropriate hyperparameters
for DevoPatch. Then we evaluate the adversarial robustness
of several image classification models and face recognition
models. We further conduct ablation studies and analyze the
factors for the effectiveness of DevoPatch.

A. Experimental Settings

1) Datasets: To evaluate the effectiveness of our method,
we conduct experiments on image classification and face
verification. For image classification, we follow [19] and con-
duct experiments on a challenging dataset, ILSVRC2012 [41],
which has 1,000 object categories in total. For the evaluation
sets, we randomly draw 1,000 correctly classified images from
ILSVRC2012 validation set. Target images are also randomly
chosen correctly classified images corresponding to target
classes from the ILSVRC2012 validation set. These selected
images are evenly distributed among the 1,000 classes. For
face verification, we select 400 pairs in dodging the attack,
where each pair belongs to the same identity, and another
400 pairs in impersonation attack, where the images from
the same pair are from different identities. The images are
selected from LFW [42] and CelebA [43]. Target images are
also randomly chosen correctly recognized images correspond-
ing to identities from LFW and CelebA. All the selected
images can be correctly recognized by the face recognition
models.
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2) Models: To evaluate the effectiveness of DevoPatch on
different network architectures of image classification mod-
els, we select three different architecture models as threat
models. For convolution-based models, we use a pre-trained
ResNet-152 (ResNet) [44] for ILSVRC2012. For attention-
based models, we select a pre-trained ViT-B-16/224 model
(ViT-B) [26]. For multi-layer-based models, we select MLP-
Mixer-B-16/224 model (Mixer-B) [27]. We also study three
face recognition models, including FaceNet [45], CosFace [46]
and ArcFace [47], which all achieve over 99% accuracies on
the validation set. The threshold for the face recognition model
is the one that achieves the highest accuracy on the validation
set.

3) Attack Methods: Decision-based settings present more
practical threats to deployed systems because it is hard to
get the score in the system. To solve the practical issue of
the score-based setting, our work first explores decision-based
patch attacks, which can still construct a perturbation with
the minimal information exposed – the top-1 predicted label.
Therefore, to reveal the issues of the score-based setting,
all experimental comparisons are performed in the decision-
based setting. For a fair comparison with score-based patch
attacks, we choose HPA [18], MPA [19], TPA [19], Adv-
watermark (AdvW) [20] and Patch-RS [21] as the baseline
under the decision-based setting. Inspired by [48], we leverage
the label smoothing [49] to turn the hard-label into the score
for the compared score-based methods without increasing
the number of queries, where ε = 0.1. Following [21], the
patch areas of TPA, AdvW, and Patch-RS are fixed. For
white-box patch attacks, we choose GAP [8] as the baseline.
GAP and DevoPatch share the same location mask M and
query (inference) budgets.

4) Evaluation Metrics: Following [19] and [21], there are
three metrics to measure the performance of black-box patch
attacks. Patch area (%) is the number of perturbed pixels
divided by the total number of pixels of an image. To control
how noticeable a patch is, we define an Average Patch Area
(APA) as the average area across all successful attacks. To
evaluate the efficiency of the patch attack, we calculate the
Average Number of Queries (ANQ) over the images finished
with patch attacks, followed by [21]. Following decision-
based adversarial attacks [22], [23], we select the number of
queries that reach the minimum value of the patch area during
the query process as the calculated value of ANQ. Finally,
a measure used to evaluate the adversarial robustness of a
model is Attack Success Rate (ASR). ASR (%) is the ratio
of adversarial examples that are successfully misrecognized.

B. Effects of Hyperparameters

Here, we analyze the key factors of DevoPatch, including
population size p, initialization rate µ, and mutation rate γ

and fitness measure. All ablation experiments are performed
on ResNet-152 for the image classification task.

1) Population Size: Table I shows the effect of different
population sizes on performance, where µ = 0.1 and γ = 1.
As the population size p gets larger, the ASR can still remain
at 100%, while the APA will decrease further and the ANQ

TABLE I
ABALATION STUDY ON POPULATION SIZE p

TABLE II
ABALATION STUDY ON INITIALIZATION RATE µ

TABLE III
ABALATION STUDY ON MUTATION RATE γ

will get greater. In particular, when p = 30, its APA is 4.08%
less than p = 10, but the ANQ is about 2 times larger. For
the sake of query efficiency, we choose p = 10.

2) Initialization Rate: Table II shows the effect of different
initialization rates on performance, where p = 10 and γ = 1.
As the initialization rate µ gradually increases, the APA will
become less, and the ANQ will not change much. Due to the
trade-off between areas and queries, we choose µ = 0.35.

3) Mutation Rate: Table III shows the effect of different
mutation rates on performance, where µ = 0.35 and p = 10.
Obviously, a larger mutation rate can indeed achieve a smaller
adversarial patch, but it greatly increases the ANQ. Specifi-
cally, when γ = 4, the APA is 3.09% less than when γ = 1,
but the ANQ is 4 times greater. Considering query efficiency
and average area, we choose γ = 1.

4) Convergence: Further, we analyze the convergence of
DevoPatch. Fig. 3 describes the variation curve of area with
query budget under different initialization rates µ. Intuitively,
our method converges quickly. When the number of queries
is about 1,000, the best adversarial example has been solved.

5) Fitness Measure: The fitness measure directly affects the
efficiency of the solution. In DevoPatch, we choose l0 norm for
the fitness calculation according to the optimization objective
in Eq. 2. However, other norms can also be used to calculate
Eq. 5. Table XI shows the ablation study about different norms
on fitness calculation. l0 norm consistently outperforms other
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Fig. 3. Convergence analysis. DevoPatch is query-efficient and can already
generate high-quality adversarial examples when the ANQ is around 1,000.

TABLE IV
ABALATION STUDY ON FITNESS MEASURE

norms in terms of queries and areas. The main reason may
be that the optimization objectives of l0 norm and Eq. 2 are
consistent. Since other norms calculate the distance similarity
with the image, they tend to place the patch in the place where
the source image and the targeted image are similar, which will
fall into the local optimal solution.

C. Attacks on Image Classification

In this section, we compare the attack performance of
various black-box patch attacks on image classification. We set
the query budgets for untargeted and targeted attack to 10,000
and 50,000, respectively. The hyperparameters of DevoPatch
are: p = 10, µ = 0.35, γ = 1. For targeted attacks,
we consider a randomly chosen correctly classified image cor-
responding to the target class ỹ from the dataset. For untageted
attacks, we use a randomly chosen correctly classified image
corresponding to the random class except the ground-truth
label from the dataset, followed by [19]. DevoPatch takes
about 6.33 hours to perform 10,000 queries on 1,000 images
on ResNet-152, based on an NVIDIA Tesla V100. The
experimental results against decision-based patch attacks in
untargeted and targeted setting on ILSVRC2012 are summa-
rized in Table V. The experimental results show that our
DevoPatch consistently outperforms HPA, MPA, TPA, AdvW
and Patch-RS in terms of queries and patch areas with a higher
ASR, which shows the effectiveness of DevoPatch.

In the untargeted setting, TPA, AdvW, and Patch-RS
achieve the trade-off on ASR and ANQ. Although the label
returns little information, TPA achieves higher ASR in the

TABLE V
DECISON-BASED BLACK-BOX PATCH ATTACKS ON ILSVRC2012

decision-based setting due to its strong texture prior. Although
HPA has a high ASR, its ANQ and APA are extremely
large. MPA achieves sub-optimal ASR, but it is inefficient
and always uses the whole query budget since it takes 10,000
queries and chooses the best one. DevoPatch achieves 100%
ASR with one-seventh of MPA on ANQ under a smaller
average area. Under the more challenging targeted setting,
due to the lack of effective information about the target class,
HPA, MPA, AdvW, and Patch-RS are almost useless. Because
TPA has a texture prior, it still has a high ASR, but the ANQ
is extremely high. Because of our simplification of solution
space, our DevoPatch outperforms TPA by 18.0%, 28.2%,
and 9.0% ASR on ResNet, ViT, and MLP, respectively, while
the average queries are only one-tenth, one-twentieth and
one-seventh of TPA. Also, we choose to compare with GAP,
the most basic white-box patch attack. We expect DevoPatch to
reach the lower bound of white-box patch attacks in attack per-
formance. Table VI illustrates that DevoPatch achieves ASR
equivalent to GAP. Both black-box and white-box experiments
show that DevoPatch is a query-efficient decision-based black-
box patch attack with high attack performance against different
network architectures on image classification.

We provide the visualization of patch attacks on different
network architectures as shown in Fig. 4. The labels below
the image indicate the predicted classes. Labels in black, red,
and blue represent the ground truth, target classes, and the
classes after the targeted attack has failed, respectively. HPA
and MPA use gray or colored patches to achieve attacks (the
second and third rows), but their patch area is large and it is
difficult to achieve targeted attacks. TPA uses the ImageNet
pre-trained texture dictionary for patch attack (shown in the
fourth row) and has a higher ASR in the decision-based setting,
but its area is also larger. AdvW selects pre-defined logos
for patch attacks, but it is difficult to implement targeted
attacks because logos have little category information (shown
in the fifth row). Patch-Rs is based on a random search
framework (shown in the sixth row), but it is difficult to
implement targeted attacks because the top-1 labels have too
little information. Our DevoPatch achieves the query-efficient
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Fig. 4. Visualization of patch attacks in the targeted setting on different network architectures. The labels below the image represent the predicted classes.
Black, red and blue labels represent ground-truth labels, target classes, and the classes after the targeted attack has failed, respectively. DevoPatch successfully
achieves the targeted attack of all examples with a small patch area.

TABLE VI
COMPARISONS WITH WHITE-BOX PATCH ATTACKS ON ASR (%)

attack in a decision-based setting with a smaller area and
higher ASR.

D. Attacks on Face Verification

In this section, we compare the attack performance of
various black-box patch attacks on face verification. We set the

query budgets for dodging and impersonation attacks to 10,000
and 50,000, respectively. The hyperparameters of DevoPatch
are: p = 10, µ = 0.35, γ = 1. For dodging attacks, for
randomly selecting a pair of faces with the same identity, the
adversary generates an adversarial face to make the model rec-
ognize them as different identities. For impersonation attacks,
the adversary generates an adversarial face to make the model
recognize them as the same identity, which originally belonged
to different identities. Here, we use cosine similarity and
threshold to determine whether it is the same identity. When
the cosine similarity of a pair of faces is greater than the
threshold, the faces belong to the same identity.

Table VII shows decision-based patch attacks on face
verification. Note that TPA exploits ILSVRC2012 on image
classification to implement the attack through a class texture
dictionary generated by style transfer. Here, because the face
can directly represent the identity, we choose targeted images
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TABLE VII
DECISON-BASED BLACK-BOX PATCH ATTACKS ON FACE VERIFICATION

as the texture dictionary of TPA. These targeted images are
the same as DevoPatch. AdvW and Patch-Rs achieve very few
ASR in the dodging attack. Although HPA and MPA have
extremely high ASR in the dodging attack, they tend to cover
the face with a larger area and complete the attack with larger
APA and extremely low query efficiency. Further, HPA, MPA,
and Patch-Rs have very little ASR in the more challenging
impersonation attack due to the limited information of the
output of the label by the model. Because TPA has the targeted
image as a prior, it achieves a good trade-off in ASR and
ANQ in the dodging and impersonation attack. But even so,
the performance of TPA in the impersonation attack can not
achieve an extremely high ASR. Our DevoPatch and TPA
share the same prior information (targeted images) in face
verification, but DevoPatch significantly outperforms TPA in
attack performance and query efficiency. In a dodging attack,
the ANQ of TPA is usually three times that of DevoPatch.
In the harder impersonation attack, the ANQ of DevoPatch
is about one-twentieth of TPA. More importantly, in such a
limited number of queries, DevoPatch has a smaller patch area
and ASR, which is enough to illustrate the effectiveness of the
proposed differential evolution patch attack algorithm.

Table V shows the visualization of different patch attacks
on face verification. Here, we choose ArcFace as the base
model and visualize it on the LFW dataset. The color of
the face frame represents whether the attack is successful.
Blue represents a failed attack and red represents a successful
attack. Because of the different semantic categories in image
classification, the generated patches are easy to perceive. In
face verification, since the color of patches is irrelevant to
semantics, a similar situation also occurs in HPA, MPA,
AdvW, and Patch-Rs. However, TPA and DevoPatch select
faces as a prior and have face-related features, the resulting
patches are relatively imperceptible. Further, since DevoPatch
can better determine the location and shape of patches, it can

TABLE VIII
ATTACKS ON THE EMPIRICAL AND CERTIFIABLE PATCH DEFENSES

improve attack performance and imperceptibility. DevoPatch
has strong applicability and achieves query-efficient decision-
based patch attacks on both image classification and face
verification.

E. Attacks on Patch Defenses

We also evaluate the performance of DevoPatch against
the patch defense methods on image classification, including
Local Gradient Smoothing (LGS) [50], Digital Watermarking
(DW) [51], Derandomized Smoothing (DS) [52] and Efficient
Certifiable Vision Transformer (ECViT) [53]. For empirical
defenses, DW and LGS are regarded as pre-processing oper-
ations to remove adversarial patches. For certifiable defenses,
we attack models including certifiable mechanisms. The back-
bone of DS is ResNet-50 and the backbone of ECViT is
ECViT-B. Table VIII shows the adversarial robustness against
empirical and certifiable patch defenses on DevoPatch. The
above defenses cause very few images to be misclassified.
For empirical patch defenses, DW and LGS do not take
effect in the face of DevoPatch. A possible reason is that
the adversarial patches produced by DevoPatch are part of
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Fig. 5. Visualization of patch attacks with ArcFace on face verification. The color of the face frame represents whether the attack is successful. Blue
represents a failed attack, and red represents a successful attack. DevoPatch successfully achieves the attack of all examples with a small patch area.

natural images rather than adversarial perturbations generated
by gradients. The former has semantics and harmony in visual
understanding. For certifiable patch defenses, ECViT is the
state-of-the-art certifiable patch defense, but it also cannot
maintain certification in large rectangular patch areas (greater
than 10%). However, ECViT increases APA and reduces the
quality of patches compared to DS. This experiment exposes
deficiencies in existing patch defenses, so it is critical to
improve the robustness and certification of defenses.

F. Ablation Study on Differential Evolution

Both genetic algorithm (GA) [54] and differential evolution
algorithm (DE) [40] are evolutionary algorithms, which sim-
ulate mutation, crossover, and selection in genetics to solve
optimization problems. Due to different encoding, crossover,
mutation, and selection strategies, DE generally has faster
convergence speed [40]. However, directly applying DE to
this task encounters the challenges of complex solution space
and efficient query efficiency. Therefore, we simplify solution
spaces to the integer domain and improve the traditional DE.

We conduct ablation studies on differential evolution with
ResNet-152, and the parameter settings are consistent with
Section IV-C. Fig. 6 shows how APA changes as the number
of queries increases under different differential evolutions.
Here, w.o. crossover and w.o. mutation mean that the crossover
and mutation improved by DevoPatch are not used, but the
crossover and mutation of traditional DE [40] are used. Under
the premise of guaranteeing 100% ASR, the mutation and
crossover of DevoPatch have a fast convergence speed, and
can better jump out of the local optimal solution, thereby
generating higher-quality adversarial patches.

G. Analysis on Target Images

To explore the impact of the selection of target images
on attack performance, we conduct experimental analysis on

Fig. 6. Ablation study on differential evolution. DevoPatch can better
jump out of the local optimal solution and generate higher-quality adversarial
patches.

TABLE IX
ANALYSIS ON DIFFERENT COLORS OF TARGET IMAGES

image classification with ResNet-152 from three perspectives,
including color, randomness, and data source. The parameter
settings are consistent with Section IV-C.

1) Color: HPA [18] and MPA [19] introduce monochrome
patches to implement the attack. Therefore, monochrome
images have the potential to become target images. Here,
we select White, Blue, Green, Yellow and Pink as target
images. Table IX illustrates the attack performance and query
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TABLE X
ANALYSIS ON RANDOMNESS OF TARGET IMAGES

TABLE XI
ANALYSIS ON DIFFERENT SOURCES OF TARGET IMAGES

efficiency when images of different colors are used as tar-
get images. Under the untargeted setting, DevoPatch with
monochrome images has a similar ASR and APA as MPA,
but the query efficiency is one-seventh of MPA. However,
monochrome images have almost no target attack performance,
because monochrome images have almost no semantic infor-
mation of the corresponding class. The above experiment
shows the efficiency of DevoPatch and the necessity of random
natural images as target images.

2) Randomness: Considering that target images on image
classification are randomly selected from the ILSVRC2012
validation set, randomness may affect attack performance
and query efficiency. Here, we fix the clean images and
randomly sample the target images five times, then evaluate
the performance. Table X illustrates the impact of different
random target images on attack performance and query effi-
ciency. From the experiments, we can find that although the
marginal improvement can be obtained through randomness,
the impact of random target images on performance is very
small, and APA and ANQ are very close. Although the optimal
performance is randomly selected multiple times, the query
cost is multiplied, which is not feasible in real-world scenarios.
From the perspective of the target images themselves, how to
generate a more powerful target image is a future work that
has the potential to improve the attack efficiency.

3) Data Source: This work is carried out in a black-
box decision-based setting. For the black-box model, we can
only obtain the output label, which is difficult to obtain full
training data or access the model architecture. As described
in Section III-C, we use targeted image priors to reduce the
complexity of the solution space and achieve effective targeted
attacks. In Section IV-C, we choose the targeted images
randomly sampled from the validation set of ILSVRC2012 and
show the effectiveness of DevoPatch, which belong to the same
source data as the training set of the models. To further demon-
strate the generalization capability of the proposed method in

real-world scenarios, we collect 100 images from the Internet
as the targeted images, which are not from the same source
as ILSVRC2012. In the case of using different-source data,
ASR equivalent to same-source data can be obtained on image
classification, as described in Table XI. DevoPatch based on
different-source data has very subtle differences in areas and
queries, which shows DevoPatch is not sensitive to the domain
of targeted images. It is worth noting that TPA uses ImageNet
to generate a texture dictionary to attack the classification
model, which is impossible in real-world scenarios. However,
DevoPatch can arbitrarily select a correctly identified image
from the Internet as the targeted image, thereby realizing a
black-box patch attack with high operability and flexibility.

H. Effectiveness Analysis

In this section, we analyze why DevoPatch has a very high
targeted attack success rate. We utilize the gradient-based class
activation mapping (Grad-CAM) [55] to visualize the attention
maps of various classes, as shown in Figure 7. First, we use
Grad-CAM to generate the attention maps of the source image
and targeted image of their corresponding classes (such as
column 2 and column 4). We can find that the most discrim-
inative regions are all in the regions with the most salient
category objects. Then, we visualize the attention map of the
source image corresponding to the target class and find that it
is not focused on the objects of the source class. Among the
limited queries, we notice that the class activation map of the
class predicted by the model focuses on the adversarial patch,
indicating that DevoPatch can become the most discriminative
region without having access to any details of the model.
Since adversarial patches based on targeted classes cover the
most discriminative regions, the model outputs predictions for
the targeted class. Therefore, DevoPatch is a query-efficient
decision-based patch attack because of paired key-points and
targeted image prior.

V. DISCUSSION

In this section, we compare the robustness of ResNet,
ViT, and MLP models to patch perturbation on image clas-
sification. In Table V, we find that our method needs a
relatively larger area to craft successful patch attacks on ViT
and MLP models compared with ResNet model with similar
query budgets. It means ViT and MLP models are relatively
more robust than ResNet model under the most threatening
decision-based patch attack. Probably because ViT and MLP
split the image into multiple non-overlapping patches which
reduce the impact of noises on one local region to the final
classification results [28]. As shown in Table VI, all kinds
of models are equally vulnerable to perturbations computed
using white-box attack GAP. We then find that adversarial
perturbations computed using ResNet rarely transfer to ViT
or MLP in the white-box setting especially for the targeted
attack, which is also observed by [28] in imperceptible attacks.
Interestingly, different from the conclusion in [28], we find that
adversarial perturbations computed using ViT and MLP do
transfer to ResNet. Particularly, the adversarial perturbations
crafted by our black-box method transfer more easily over
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Fig. 7. Demonstration of the different discriminative regions of ResNet-152 on image classification. We utilize the gradient-based class activation mapping
[55] to visualize the attention maps of various classes. Among the limited queries, we notice that the class activation map of the class predicted by the model
focuses on the adversarial patch, indicating that DevoPatch can become the most discriminative region without having access to any details of the model.
Since adversarial patches based on targeted classes cover the most discriminative regions, the model outputs predictions for the targeted class.

different architectures, even for the targeted attack. In addition,
we first present the lower bound on the area required for the
targeted patch attack in the decision-based setting. Targeted
attacks of any category can be completed in about 25% of
the patch area under about 1,300 queries. This is an important
safety reference for real-world systems. The above observa-
tions suggest that studying the adversarial robustness of DNNs
from the perspective of decision-based black-box patch attacks
is necessary to better understand and improve DNNs.

VI. CONCLUSION

In this work, we explore the practical threat of decision-
based black-box patch attack to the robustness of existing
DNNs for the first time. Compared with transfer-based and
score-based settings, decision-based settings do not require
access to a large amount of training data and only rely on min-
imal information, the labels by the model’s output, to achieve
the adversarial attack. To simplify the solution space and
improve query efficiency, we propose a differential evolution-
ary algorithm named DevoPatch for query-efficient adversarial
patch attacks in the decision-based black-box setting. In
DevoPatch, we model adversarial patches as paired key-points
and utilize targeted images as priors. With paired key-points
and targeted image priors, the differential evolution algorithm
based on the integer domain greatly improves the query
efficiency. As a result of our comprehensive results, DevoPatch
outperforms the state-of-the-art black-box patch attack in
terms of patch area and ASR both on image classification and
face verification. More importantly, with a reduced solution

space, DevoPatch illustrates significant query-efficiency when
compared with the existing patch attacks in the decision-based
black-box setting. We also investigate the robustness of various
DNN architectures against DevoPatch.

DevoPatch exposes the shortcomings of existing DNNs
against patch attacks. In future research, we can use DevoPatch
to evaluate the robustness of the model to black-box adversar-
ial patches. In addition, our work provides a deep understand-
ing of the robustness of DNNs against decision-based patch
attacks. We believe this work could be used to inform and
inspire the design and deployment of robust vision models
based on various DNN architectures in the future.
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